w w w. s t u d 55. r u

 

w w w. s t u d 55. r u

 

 - Чертежи  - Контрольные  - Курсовые

  Цены   Контакты

Начертательная геометрия - решение задач ОмГУПС с видеороликами  выполнения контрольных заданий.

З а д а ч а 5.  Определить линию пересечения треугольников ABC и DEK с учетом их взаимной видимости.

 

Общий прием построения линии пересечения двух плоскостей состоит в следующем. Вводят вспомогательную плоскость, строят линии пересечения вспомогательной плоскости с двумя заданными и при пересечении построенных линий находят общую точку двух заданных плоскостей. Для нахождения второй общей точки построение повторяют с помощью второй вспомогательной плоскости.

В качестве вспомогательных плоскостей обычно берут плоскости частного положения - плоскости уровня относительно плоскостей проекций (горизонтальные, фронтальные) или проецирующие (перпендикулярные к плоскостям проекций).

Для построения линии пересечения двух плоскостей можно использовать точки пересечения двух прямых, принадлежащих одной из плоскостей, с другой плоскостью. Точку пересечения прямой с плоскостью строят в следующем порядке: через заданную прямую проводят вспомогательную проецирующую плоскость; строят линию пересечения вспомогательной и заданной плоскостей; в пересечении построенной линии с заданной прямой отмечают искомую точку.

Видимость геометрических элементов на комплексном чертеже определяется с помощью конкурирующих точек, проекции которых на какую-либо плоскость проекций совпадают. Из двух горизонтально конкурирующих точек на П1 видна будет та, у которой больше высота, т.е. координата z, а из двух фронтально конкурирующих точек на П2 видна будет та, у которой больше глубина, т.е. ордината y.

Для решения задачи применен второй из указанных выше способов. Точка пересечения прямой КЕ с плоскостью треугольника АВС (точка М) найдена с помощью вспомогательной фронтально проецирующей плоскости Ф, фронтальный след которой совпадает с К2Е2. Вспомогательная плоскость пересекается с плоскостью треугольника АВС по линии 7-8. Пересечение горизонтальных проекций этой линии и прямой КЕ (точка М), является горизонтальной проекцией первой точки линии пересечения заданных плоскостей. Ее фронтальная проекция построена по принадлежности прямой КЕ.

Аналогичным способом найдена и точка N, которая является точкой пересечения прямой ВС с плоскостью треугольника DEK. Разница только в том, что в качестве вспомогательной взята горизонтально проецирующая плоскость Г, горизонтальный след которой совпадает с В1С1. Эта плоскость пересекает треугольник DEK по линии 9-10. Пересечение фронтальных проекций этой линии и прямой ВС (точка N2) является фронтальной проекцией искомой точки, ее горизонтальная проекция находится по принадлежности прямой ВС. Видимость плоскостей треугольников на горизонтальной плоскости проекций определена с помощью горизонтально конкурирующих точек 9 и 11, а на фронтальной - с помощью фронтально конкурирующих точек К и 7. Точка 11 распoложена выше точки 9 (у нее больше координата z), поэтому она будет видимой на П1. Так как эта точка принадлежит прямой BN, то и прямая будет видимой.

На фронтальной проекции видимой будет прямая AB. Принадлежащая ей точка 7 видимая - она ближе расположена к наблюдателю (у нее больше координата y), чем конкурирующая с ней точка K.

>>Скачать видео-чертеж решения задачи №5<<

>>Назад<<    >>Далее к задаче №6<<
 

 

8-950-790-65-90

Алексей

ICQ: 611-278-489

Online

stud-help55@ya.ru

 

 

© "Эрудит Сервис", 2005-2014

 stud-help55@yandex.ru