Необходимо построить наклонную пирамиды по известному основанию и высоте.
Для решения задачи необходимо знать теоретический материал:
— способы восстановления перпендикуляра к плоскости;
— определение натуральных величин методом вращения;
— определение видимости на чертеже с помощью конкурирующих точек (рассматривали в задаче 1).
Порядок решения задачи
1. Согласно варианту задания наносим на комплексный чертеж координаты точек основания пирамиды, получаем плоскость в виде треугольника ABC(A’B’C’; ABC) (рис.2.1.a).
Рис. 2.1
2. Для нахождения вершины пирамиды по заданной высоте необходимо к указанной плоскости провести перпендикуляр через точку А (A’; A) т.к. величина высоты задана SA, для чего:
— в заданной плоскости треугольника основания пирамиды проводим горизонталь h’и h и фронталь – f’ и f (рис.2.1.б).
— к проекциям горизонтали и фронтали, которые выражены в натуральной величине через точку А(A’; A) проводим перпендикуляр m (рис.2.2.а).
Рис.2.2
3. Так как высота пирамиды задана в натуральной величине, а проведенный перпендикуляр — в проекциях, необходимо получить линию натуральной величины произвольного отрезка на перпендикуляре. Для этого воспользуемся методом вращения:
-на проекциях перпендикуляра возьмем произвольную точку P (P’ и Р) (рис.2.2.б);
— отрезок AР в горизонтальной проекции переведем в частное положение путем разворота его вокруг точки A, до параллельности оси х, получим точку P1 (рис.2.3.а).
— можно отметить, что при вращении точки в какой-то плоскости ее проекция на сопряженной плоскости движется по прямой параллельной оси х. Проведем ее из точки P’ и тогда по линиям связи на ней находим фронтальную проекцию точки P —P’1
— соединив P’1 и A’ получим линию натуральной величины отрезка перпендикуляра, на котором откладываем заданное расстояние SA (h=85мм), получая S’1 — истинное положение вершины пирамиды.
4. Переведем истинную вершину пирамиды S’1 на фронтальную проекцию перпендикуляра по линии параллельной оси х получаем S’ — фронтальную проекцию вершины пирамиды. По линии связи получаем ее горизонтальную проекцию – S (рис.2.3.б).
Рис.2.3
5. Таким образом, вершина пирамиды S (S’ и S) построена, соединяем ее с основанием и в заключение определяем видимость ребер пирамиды, для чего:
— возьмем на горизонтальной проекции две конкурирующие точки 3 и 4, принадлежащие соответственно линиям SC и AB спроецируем данные точки на фронтальную плоскость, получим 3’ и 4’ на линиях S’C’ и A’B’;
— по правилу определения видимости с помощью конкурирующих точек определяем, что прямая SC, в горизонтальной проекции будет видимой, т.к. ордината точки 3’, находящаяся на ней во фронтальной плоскости больше, чем ордината точки 4’, а линия AB будет невидимой (рис.2.4.а);
— аналогично определяем видимость во фронтальной плоскости, беря пару конкурирующих точек 5’ и 6’, находящихся на прямых S’B’ и A’C’. По выше изложенному правилу S’B’ на фронтальной плоскости проекций будет видимой, а A’C’–невидимой (рис.2.4.б).
Рис.2.4
Рис.2.5
Купленные чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpg – обычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdw – формат программы Компас 12 и выше или версии LT;
*.dwg и .dxf — формат программы AUTOCAD, nanoCAD;
Раздел: Начертательная геометрия /