Пошаговое решение задачи №4 - Построение развертки призмы и пирамиды и нанесение на нее их линии пересечения
тел: +7 (950) 790-65-90 - Алексей

логотип-stud55ru

Заказать работы можно здесь

тел: 8-(950)-790-65-90 - Алексей

 e-mail: stud-help55@ya.ru

top_arrow

top_arrow

пошаговый алгоритм решения задач по начертательной геометрии из Фролова

Пошаговое решение задачи №4 — Построение развертки призмы и пирамиды и нанесение на нее их линии пересечения

Необходимо построить развертки гранных тел и нанесения на развертку линии пересечения призмы и пирамиды.

Для решения этой задачи по начертательной геометрии  необходимо знать:

— сведения о развертках поверхностей, способах их построения и, в частности, построение разверток гранных тел;

— взаимно-однозначные свойства между поверхностью и ее разверткой и способы перенесения точек, принадлежащих поверхности, на развертку;

— методы определения натуральных величин геометрических образов (линии, плоскости и др.).

Порядок решения Задачи

Разверткой называется плоская фигура, которая получается при разрезании и разгибании поверхности до полного совмещения с плоскостью. Все развертки поверхностей (заготовки, выкройки) строятся только из натуральных величин.

1. Поскольку развертки строятся из натуральных величин, приступаем к их определению, для чего па кальку (миллиметровку или другую бумагу) формата A3, переносится задача № з со всеми точками и линиями пересечений многогранников.

2. Для определения натуральных величин ребер и основания пирамиды используем метод прямоугольного треугольника. Безусловно, можно и другие, но на мой взгляд, этот метод более доходчив для студентов. Суть его заключается в том, что «на построенном прямом угле откладывается на одном катете проекционная величина отрезка прямой, а на другом — разность координат концов данного отрезка, взятая с сопряженной плоскости проекций. Тогда гипотенуза полученного прямого угла дает натуральную величину данного отрезка прямой».

frolov4_1 

Рис.4.1

frolov4_2

Рис.4.2

frolov4_3

Рис.4.3

3. Итак, на свободном месте чертежа (рис.4.1.а) строим прямой угол.

По горизонтальной линии этого угла откладываем проекционную величину ребра пирамиды DA взятую с горизонтальной плоскости проекций — lDA. По вертикальной линии прямого угла откладываем разность координат точек Dи A, взятых с фронтальной плоскости проекций (по оси z вниз) — . Соединив полученные точки гипотенузой, получим натуральную величину ребра пирамиды |DA|.

Таким образом определяем натуральные величины других ребер пирамиды DB и DC, а также основания пирамиды АВ, ВС, АС (рис.4.2), для которых строим второй прямой угол. Заметим, что определение натуральной величины ребра DC производится в тех случаях, когда на исходном чертеже он дан проекционно. Это легко определяется, если вспомним правило: «если прямая па какой-либо плоскости проекций параллельна оси координат, то на сопряженной плоскости она проецируется в натуральную величину».

В частности, в примере нашей задачи фронтальная проекция ребра DC параллельна оси х, следовательно, в горизонтальной плоскости DC сразу выражена в натуральной величине |DC| (рис.4.1).

frolov4_4

Рис.4.4

4. Определив натуральные величины ребер и основания пирамиды, приступаем к построению развертки (рис.4.4). Для этого на листе формата бумаги ближе к левой стороне рамки берем произвольную точку D считая, что это вершина пирамиды. Проводим из точки D произвольную прямую и откладываем на ней натуральную величину ребра |DA|, получая точку А. Тогда из точки А, взяв на раствор циркуля натуральную величину основания пирамиды R=|АВ| и поместив ножку циркуля в точку А делаем дуговую засечку. Далее берем на раствор циркуля натуральную величину ребра пирамиды R=|DB| и, поместив ножку циркуля в точку D делаем вторую дуговую засечку. В пересечении дуг получаем точку В, соединив ее с точками А и D получаем грань пирамиды DАВ. Аналогичным образом пристраиваем к ребру DB грань DBC, а к ребру DC — грань DCА.

К одной из сторон основания, например ВC, пристраиваем основание пирамиды также методом геометрических засечек, беря на раствор циркуля величины сторон АB и AС и делая дуговые засечки из точек B и C получая точку A (рис.4.4).

5. Построение развертки призмы упрощается тем, что на исходном чертеже в горизонтальной плоскости проекций основанием, а во фронтальной – высотой 85мм, она задана сразу в натуральную величину

Для построения развертки мысленно разрежем призму по какому-либо ребру, например по E, закрепив его на плоскости, развернем другие грани призмы до полного совмещения с плоскостью. Вполне очевидно, что получим прямоугольник, у которого длиной является сумма длин сторон основания, а высотой — высота призмы – 85мм.

Итак, для построения развертки призмы поступаем:

— на том же формате, где построена развертка пирамиды, с правой стороны проводим горизонтальную прямую линию и от произвольно взятой точки на ней, например E, последовательно откладываем отрезки основания призмы EK, KG, GU, UE, взятые с горизонтальной плоскости проекций;

— из точек E, K, G, U, E восстанавливаем перпендикуляры, на которых откладываем высоту призмы, взятую с фронтальной плоскости проекций (85мм);

— соединяя полученные точки прямой, получаем развертку боковой поверхности призмы и к одной из сторон основания, например, GU пристраиваем верхнее и нижнее основание методом геометрических засечек, как выполняли при построении основания пирамиды.

frolov4_5

Рис.4.5

6. Для построения линии пересечения на развертке используем правило, гласящее о том, что «любой точке на поверхности соответствует точка на развертке». Возьмем, например, грань призмы GU, где проходит линия пересечения с точками 1-2-3;. Отложим на развертке основания GU точки 1,2,3 по расстояниям, взятым с горизонтальной плоскости проекции. Восстановим из этих точек перпендикуляры и отложим на них высоты точек 1’, 2’, 3’, взятые с фронтальной плоскости проекции – z1, z2 и z3. Таким образом, на развертке получили точки 1, 2, 3, соединив которые получаем первую ветвь линии пересечения.

Аналогично переносятся, все остальные точки. Построенные точки соединяются, получая вторую ветвь линии пересечения. Выделяем красным цветом – искомая линия. Добавим, что при неполном пересечении гранных тел, на развертке призмы будет одна замкнутая ветвь линии пересечения.

7. Построение (перенесение) линии пересечения на развертке пирамиды производится таким же образом, но с учетом следующего:

— поскольку развертки строятся из натуральных величин, необходимо перенести положение точек 1-8 линии пересечения проекций на линии ребер натуральных величин пирамиды. Для этого возьмем, например, точки 2 и 5 во фронтальной проекции ребра DA  перенесем их на проекционную величину этого ребра прямого угла (рис.4.1) по линиям связи параллельным оси х, получим искомые отрезки |D2| и |D5| ребра DA в натуральных величинах, которые и откладываем (переносим) на развертку пирамиды;

— аналогично переносятся все другие точки линии пересечения, в том числе и точки 6 и 8, лежащие на образующих Dm и Dn для чего на прямом угле (рис.4.3) определяются натуральные величины этих образующих, а затем на них переносятся точки 6 и 8;

— на втором прямом угле, где определены натуральные величины основания пирамиды, переносятся точки m и n пересечений образующих с основанием, которые впоследствии переносятся на развертку.

Таким образом, полученные на натуральных величинах точки 1-8 и перенесенные на развертку, соединяем последовательно прямыми линиями и окончательно получаем линию пересечения пирамиды на ее развертке.

Раздел: Начертательная геометрия / 
  •   8 (950) 790-65-90
  •   Москва-Спб-Сургут-Омск
  •   stud-help55@ya.ru
Автор темы: www.wp-city.ru нетки